Carbon Dioxide as Oxidant for the Conversion of Methane to Ethane and Ethylene Using Modified CeO₂ Catalysts

Ye Wang,¹ Yoshimoto Takahashi, and Yasuo Ohtsuka

Research Center for Organic Resources and Materials Chemistry, Institute for Chemical Reaction Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan

Received January 18, 1999; revised April 23, 1999; accepted April 27, 1999

CaO-CeO₂ is the most effective catalyst for the conversion at 850°C of CH₄ to C₂H₆ and C₂H₄ by CO₂ among a series of CeO₂ catalysts modified with alkali and alkaline earth metal oxides. When the CaO-CeO₂ catalyst is prepared in the range of Ca/Ce ratio 0.1-0.5 by impregnation method, there exist synergistic effects between the two components for the formation of C₂ hydrocarbons, and the catalyst forms solid solution. It is thus suggested that the formation of solid solution is responsible for synergistic effects. The lattice oxygen of the CaO-CeO₂ catalyst converts CH₄ mainly to H₂ and CO, and the presence of CO₂ is indispensable for C₂ formation. Both C2 selectivity and C2 yield increase remarkably with increasing partial pressure of CO₂, these values at 850°C reaching 75 and 4% at 70 kPa, respectively. Correlation of the results of kinetic analyses and CO₂ TPD measurements indicates that the existence of the pool of the CO₂ chemisorbed on the CaO-CeO₂ catalyst accounts for high C₂ selectivity and yield. The characterization of the binary catalyst show that bulk carbonates are not detectable during reaction and Ce³⁺ sites are formed at the outermost layer. It is speculated that these sites activate the chemisorbed CO₂ to generate active oxygen species, which work for the conversion of CH₄ to C₂ hydrocarbons. © 1999 Academic Press

Key Words: methane; carbon dioxide; ethane and ethylene; CaO–CeO₂ catalyst.

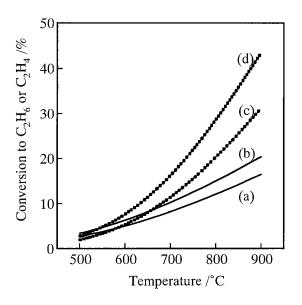
INTRODUCTION

Activation and utilization of CH_4 and CO_2 , which are both abundant but usually less reactive, are one of the challenging subjects in chemistry. As for CH_4 , a large number of papers have been published on its direct conversion, particularly on the oxidative coupling of CH_4 to C_2 hydrocarbons (C_2H_6 and C_2H_4) by O_2 (1–6). The inevitable formation of CO_2 , however, seems to be one of the most serious problems from a practical point of view (6). Our novel approach is to use CO_2 as an oxidant instead of O_2 . CO will be the only by–product in this case. Moreover, unlike O_2 , CO_2 will not induce gas phase radical reactions. In other words, the reaction of CH_4 and CO_2 to produce C_2 hydrocarbons will mainly be controlled by heterogeneous catalyst. It can thus be expected that the development of active catalyst achieves high selectivity to C_2 hydrocarbons.

Equilibrium conversions of CH_4 to C_2H_6 and C_2H_4 in the following reactions are evaluated from thermodynamic calculations (as shown in Fig. 1):

$$2CH_4 + CO_2 \rightarrow C_2H_6 + CO + H_2O \qquad [1]$$

$$2CH_4 + 2CO_2 \rightarrow C_2H_4 + 2CO + 2H_2O.$$
 [2]


The increase in CO₂/CH₄ ratio increases conversions to C₂H₆ and C₂H₄, i.e., yields of C₂H₆ and C₂H₄, which exceed 15 and 25% at \geq 800°C for the reactant with CO₂/CH₄ ratio of 2, respectively. These values, if achieved, would meet the target C₂ yield (ca. 30%) estimated from economic evaluations (7). The key point for the realization is to develop an efficient catalyst that is capable not only of activating both CH₄ and CO₂ but also of producing C₂ hydrocarbons selectively.

Only a few studies have been reported on the conversion of CH₄ to C₂ hydrocarbons with CO₂. Enhancement of C₂ formation by CO₂ was observed in the oxidative coupling of CH₄ over a PbO/MgO catalyst (8), but it could not be sustained in the absence of O₂ (9). Our research group has investigated systematically catalytic activities of more than 30 metal oxides for the conversion of CH₄ by CO₂ in the absence of O₂ (10, 11) and found that praseodymium or terbium oxide exhibits relatively good catalytic performance; a C₂ yield of 1.5% with selectivity of ca. 50% is obtained at 850°C (12). A binary oxide of La₂O₃–ZnO was also reported to give a C₂ yield of 2.8% (13). However, such yields are insufficient. Moreover, the role of CO₂ in C₂ formation and the factors controlling the reaction are still unclear.

This work therefore focuses on the development of a more active catalyst system for C_2 formation from CH_4 and CO_2 . CeO_2 was selected as a base component of the system, because it showed the highest catalytic activity for the conversion of CH_4 by CO_2 among the metal oxides examined (11). The great redox potential of CeO_2 seems to relate with high CH_4 conversion (>10% at 850°C). However, the

¹ To whom correspondence should be addressed.

FIG. 1. Equilibrium conversions of CH_4 to C_2H_6 (solid lines) and C_2H_4 (dotted lines) using CO_2 as oxidant. (a) and (c), $CO_2/CH_4 = 1$; (b) and (d), $CO_2/CH_4 = 2$.

major product obtained over CeO_2 alone was CO, and thus C_2 selectivity was negligibly small. It is expected that the modification of CeO_2 with other components may improve C_2 selectivity, and the preliminary study has verified this expectation (14). The present paper clarifies the effect of the modification of CeO_2 with various alkali and alkaline earth metal oxides, in particular the synergistic effect between CaO and CeO_2 in binary catalysts of CaO–CeO₂. The role of CO₂ in the catalysis of C_2 formation and the reaction mechanism are also discussed on the basis of the results of reaction kinetics and chemisorbed species.

EXPERIMENTAL

Catalyst Preparation

Modified CeO₂ catalysts were prepared mainly by impregnating powdery CeO₂ (Rhone–Poulenc, purity >99.5%) with aqueous solutions of alkali and alkaline earth metal nitrates. The surface area of CeO₂ measured by N₂ adsorption was 7 m² g⁻¹. The concentration of alkali or alkaline earth metal cation in the solution was 1.0 mol dm⁻³. The atomic ratio of *M*/Ce (*M*= alkali and alkaline earth metal) was 0.2, unless otherwise stated. The impregnation was carried out at room temperature for ca. 12 h. The resultant was calcined at 850°C in an air flow (200 ml min⁻¹) for 4 h after water was evaporated at 90°C. The calcined catalyst was sieved to particles with 16–32 mesh before use. Among these binary catalysts, the CaO–CeO₂ system was mainly used, Ca/Ce ratio usually being 0.5.

A physical mixture of CaO and CeO₂ with Ca/Ce ratio of 0.2 was also used. In this case, CaO, prepared by calcining

 $Ca(NO_3)_2$ at 850°C in air flow, was thoroughly mixed with CeO_2 for ca. 1 h using an agate mortar.

Catalytic Reaction

The reaction was performed using a conventional fixedbed quartz reactor operated at atmospheric pressure. The inner diameter of the reactor was 10 mm. For a standard reaction, 2 g of the granular catalyst with size 16–32 mesh was first loaded in the reactor and then calcined again with air (100 ml min⁻¹) at 850°C for 1 h, followed by purge with He (>99.9999%, 100 ml min⁻¹) for 1 h. Finally, a mixture of CH₄ (>99.999%) and CO₂ (>99.995%) was introduced to the reactor. Unless otherwise described, reaction temperature was 850°C, and partial pressures of CH₄ and CO₂, denoted as *P*(CH₄) and *P*(CO₂) respectively, were both 30.3 kPa. The total flow rate of the reactants diluted with He was 100 ml min⁻¹.

The effluent gas after removal of H_2O was analyzed by an on-line high-speed gas chromatograph (M200D, Microsensor Technology, Inc.). A MS-5A PLOT column was used for the analysis of H_2 , CH_4 , and CO. CH_4 , CO_2 , C_2H_4 , and C_2H_6 were simultaneously analyzed with a PORA PLOT-Q column. One analytical run was complete within 150 s, and thus the sampling was repeated every 180 or 300 sec. Data collection was automatically controlled with a computer. The data after 2 h of reaction are described in this paper, unless otherwise stated.

Data processing is based on the assumption that the carbon in CO_2 is converted to CO and the carbon in CH_4 is converted to C_2H_6 , C_2H_4 , and CO. Thus, CO is produced from both CH_4 and CO_2 . The CO from CH_4 is first calculated according to the previous method (10), in which almost all of the reactions involving CH_4 and CO_2 are taken into account. Then, CH_4 conversion and selectivity to C_2 hydrocarbons are calculated using the following equations:

 CH_4 conversion =

$$\frac{2[C_2H_6] + 2[C_2H_4] + [CO \text{ from } CH_4] \text{ (mol)}}{[CH_4] + 2[C_2H_6] + 2[C_2H_4] + [CO \text{ from } CH_4] \text{ (mol)}} \times 100 \text{ (\%)}$$

 C_2 selectivity =

$$\frac{2[C_2H_6] + 2[C_2H_4] \text{ (mol)}}{2[C_2H_6] + 2[C_2H_4] + [CO \text{ from CH}_4] \text{ (mol)}} \times 100 \text{ (\%)}.$$

 C_2 yield is defined as the product of CH_4 conversion and C_2 selectivity.

Catalyst Characterization

Both fresh and used catalysts were characterized using the following methods. The BET surface areas were measured by N_2 adsorption at 77 K using a volumetric apparatus

60

(NOVA 1200S, Quanta Chrome). The X-ray diffraction (XRD) analyses were performed with an X-ray diffractometer (XRD 6000, Shimazu) using Cu K_{α} radiation. The X-ray photoelectron spectroscopy (XPS) measurements were made with an ESCA-750 (Shimazu) spectrometer using Mg K_{α} radiation. The background pressure in the detector chamber was lower than 3×10^{-6} Pa.

CO2 TPD Measurements

The CO₂ TPD technique was used for examining the chemisorption of CO₂ on the CaO–CeO₂ catalyst with a Ca/Ce ratio of 0.5. Before TPD measurements, the reaction of CH₄ and CO₂ under the same partial pressure of 30 kPa was carried out at 850°C for 2 h, followed by quenching to 100°C and then replacing feed gas with He at 100°C. The TPD run was then performed at a heating rate of 2.5° C min⁻¹ up to 950°C in a stream of either He or CO₂ diluted with He.

RESULTS

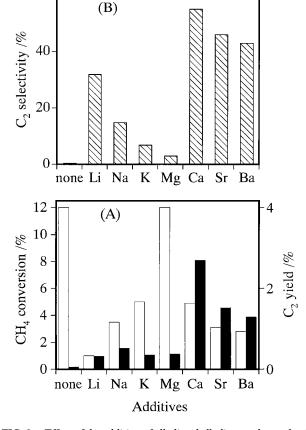

Performance of Modified CeO₂ Catalysts

Figure 2 shows the results over CeO₂ catalysts modified with various alkali and alkaline earth metal oxides. In accordance with the previous report (11), CeO₂ alone exhibited high CH₄ conversion but very low C₂ selectivity. The modification of CeO₂ with these additives increased C₂ selectivity and C₂ yield, although CH₄ conversion was decreased in most cases. It is noteworthy that the modification with alkaline earth metal oxides leads to higher C₂ selectivity than that with alkali metal oxides, since this is quite different from the observation in the oxidative coupling of CH₄ by O₂ over modified CeO₂ catalysts (15). Among these binary catalysts examined, CaO–CeO₂ showed the highest C₂ selectivity and yield. The following studies focus on this catalyst system.

Synergistic Effect between CaO and CeO₂ for C₂ Formation

The effect of Ca/Ce ratio on the catalytic performance of CaO–CeO₂ is shown in Table 1. In contrast with the case of CeO₂ alone, CaO alone gave very low CH₄ conversion, which suggests that the activation of CO₂ on this catalyst is rather difficult. When the rate of CH₄ conversion per surface area was compared among CaO–CeO₂ catalysts, it increased with increasing Ca/Ce ratio in the range of 0.1–0.5, but decreased upon further increase. It should be noted that all binary catalysts of CaO–CeO₂ provided higher C₂ selectivity than CaO alone. These observations point out that there exist synergistic effects between CeO₂ and CaO for the conversion of CH₄ into C₂ hydrocarbons by CO₂.

When the catalyst with Ca/Ce ratio of 0.2 was prepared by physical mixing, as shown in Table 1, CH_4 conversion and C_2 selectivity were lower than those obtained for the

FIG. 2. Effect of the addition of alkali and alkaline earth metal oxides to CeO₂ on the reaction of CH₄ and CO₂. (A) CH₄ conversion (\Box) and C₂ yield (\blacksquare); (B) C₂ selectivity. Reaction conditions: $T = 850^{\circ}$ C, $P(CH_4) = P(CO_2) = 30$ kPa.

impregnated catalyst with the same Ca/Ce ratio. The rate of CH_4 conversion or C_2 selectivity for the physically mixed catalyst was nearly equal to the arithmetic mean of those observed for each component. Thus, catalyst preparation by the impregnation method led to synergistic effect.

TABLE 1

Effect of Ca/Ce Ratio on t	the Performance o	f CaO–CeO2 Catalysts
----------------------------	-------------------	----------------------

Catalyst ^a	CH ₄ conv. (%)	$\frac{R(CH_4)^b}{(mmol m^{-2} h^{-1})}$	Selectivity (%)			C ₂ yield
			C_2H_6	C_2H_4	C_2	(%)
CeO ₂	12	3.5	0.2	0.3	0.5	0.1
Ca/Ce (0.1)	5.1	3.6	26	20	46	2.3
Ca/Ce (0.2)	4.9	4.0	31	24	55	2.7
Ca/Ce (0.2) ^c	4.0	2.3	6.1	4.0	10	0.4
Ca/Ce (0.5)	5.0	5.2	36	26	62	3.2
Ca/Ce (1.0)	3.4	2.0	28	18	46	1.6
CaO	0.3	0.12	23	13	36	0.1

^a Atomatic ratio in parentheses.

^b Rate of CH₄ conversion per surface area.

^{*c*} Prepared by physical mixing of CaO and CeO₂. Reaction conditions: $T = 850^{\circ}$ C; $P(CH_4) = P(CO_2) = 30$ kPa.

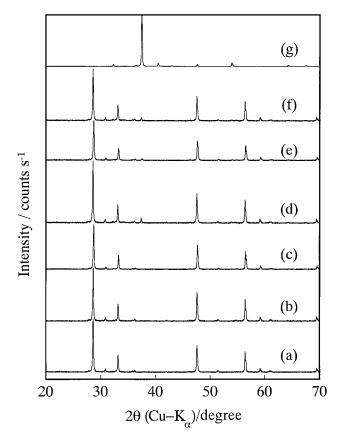


FIG. 3. X-ray diffraction patterns for fresh catalysts. (a) CeO_2 ; (b) Ca/Ce = 0.1; (c) Ca/Ce = 0.2; (d) Ca/Ce = 0.2 prepared by physical mixing; (e) Ca/Ce = 0.5; (f) Ca/Ce = 1; (g) CaO.

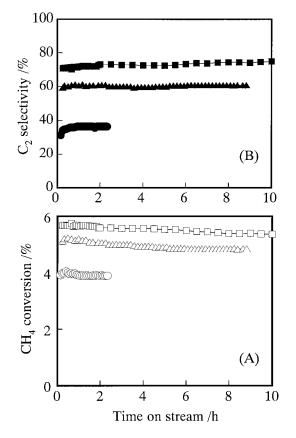
To uncover the nature of such an effect, fresh catalysts were characterized by XRD and XPS. The XRD results are shown in Fig. 3. The diffraction lines observed for CeO₂ alone could be assigned to a typical cubic fluorite structure of CeO₂. Only these lines existed after the addition of CaO to CeO₂ up to a Ca/Ce ratio of 0.2 by the impregnation method, and there were no XRD peaks due to Ca species. When the ratio was increased to ≥ 0.5 , the peak of CaO appeared at 2θ (Cu K_{α}) of 37.5°, but the intensity was very weak. On the other hand, the physically mixed catalyst with a Ca/Ce ratio of 0.2 provided distinct diffraction peaks of CaO that were stronger than those observed for the impregnated sample with a ratio of 1.0. Since CaO can partially dissolve in CeO₂ to form a fluorite-type solid solution (16, 17), the absence of diffraction lines of CaO and the decreased intensities in the impregnated CaO-CeO₂ samples show the formation of solid solution. It is likely that the formation creates a synergistic effect between CaO and CeO_2 in the selective production of C_2 hydrocarbons.

Surface compositions of $CaO-CeO_2$ catalysts, determined by XPS, are shown in Table 2. Ca/Ce ratios on the surface were always larger than those upon preparation, indicating preferential incorporation of Ca^{2+} into the out-

ermost layer of the CeO₂ matrix. The surface ratio was almost unity when the bulk one was less than 0.5, but it steeply increased upon further increase, which shows the surface coverage by Ca species. This may be the reason for the decrease in both the rate of CH₄ conversion and C₂ selectivity when the Ca/Ce ratio was increased from 0.5 to 1.0, as shown in Table 1. In other words, the cooperation of Ca and Ce components plays a key role in the conversion of CH₄ to C₂ hydrocarbons. The catalyst with a bulk Ca/Ce ratio of 0.5, which exhibited the highest CH₄ conversion rate and C₂ selectivity, is considered in further detail.

Role of CO_2 in the Conversion of CH_4 to C_2 Hydrocarbons

The lattice oxygen of CaO–CeO₂ has been reported to be responsible for the selective formation of C₂ hydrocarbons in the oxidative coupling of CH₄ by O₂ (17). If this is the case in the present study, the role of CO₂ may be the replenishment of the lattice oxygen in place of O₂. To examine this point, the reaction of CH₄ was carried out in the absence of CO₂ over the CaO–CeO₂ catalyst. Although a trace amount of C₂ hydrocarbons was observed, most of CH₄ was converted to H₂ and CO, and the reaction almost stopped after 80 min (14). Therefore, it is unlikely that the lattice oxygen in the CaO–CeO₂ catalyst plays an important role in C₂ formation in the present study.


The change in reaction performance with time on stream in the presence of CO_2 with different partial pressures is shown in Fig. 4. In contrast with the result without CO_2 , C_2 hydrocarbons were the main products from CH_4 at higher $P(CO_2)$ of 30 and 70 kPa. Both CH_4 conversion and C_2 selectivity in these cases were almost unchanged during 9– 10 h of reaction. When CH_4 conversion was evaluated by two different methods, that is, on the basis of either CH_4 consumed or C_2 hydrocarbons and CO formed (see Experimental), the two values agreed within $\pm 3\%$, indicating a very good carbon balance. These observations mean there was no significant carbon deposition over the CaO–CeO₂ catalyst. It is thus evident that CO_2 acts as an oxidant for the conversion of CH_4 to C_2 hydrocarbons.

More detailed dependence of the performance of the CaO–CeO₂ catalyst on $P(CO_2)$ is plotted in Fig. 5. CH₄ conversion increased with $P(CO_2)$ but leveled off at \geq 30 kPa. As $P(CO_2)$ increased, C₂ selectivity increased remarkably and reached 75% at 70 kPa. This finding is noteworthy since

TABLE 2

Bulk and Surface Ratios of Ca/Ce

Ca/Ce used for preparation	Ca/Ce determined by XPS	
0.1	0.9	
0.2	1.1	
0.5	1.3	
1.0	3.8	

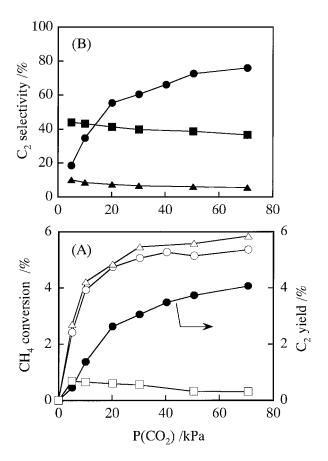
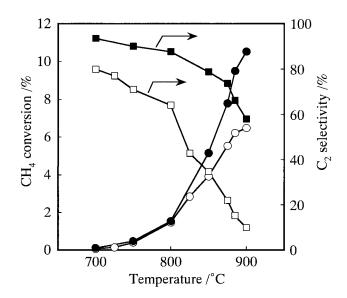


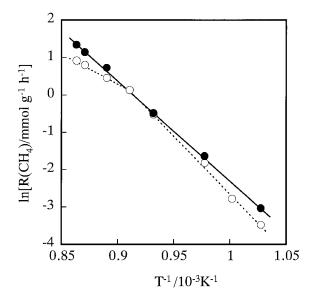
FIG. 4. Reaction performance as a function of time on stream in the presence of CO₂ over the CaO–CeO₂ catalyst (Ca/Ce = 0.5). (A) CH₄ conversion at *P*(CO₂) of 10 kPa (\bigcirc), 30 kPa (\triangle), and 70 kPa (\square). (B) C₂ selectivity at *P*(CO₂) of 10 kPa (\bigcirc), 30 kPa (\blacktriangle), and 70 kPa (\blacksquare). Reaction conditions: *T*=850°C, *P*(CH₄) = 30 kPa.


it is usually observed that product selectivity in partial oxidation reactions decreases with increasing partial pressure of oxidant. For comparison, the effect of $P(CO_2)$ over a single oxide of CeO₂ or CaO is also provided in Fig. 5, where 0.5 g of CeO₂ is used in the former case to keep CH₄ conversion at a level similar to that for the CaO-CeO₂ catalyst. C₂ selectivity was much lower over CeO₂ than over the binary catalyst even when compared at the same level of CH4 conversion. The increase of $P(CO_2)$ did not affect C_2 selectivity over CaO and CeO₂. Almost the same tendency was observed over other modified catalysts, such as MgO-CeO₂, SrO-CeO₂, and BaO-CeO₂. Therefore, the considerable increase in C_2 selectivity with increasing $P(CO_2)$, observed for the CaO-CeO₂ catalyst, is quite unique. These observations point out that CO₂ plays crucial roles in the selective formation of C₂ hydrocarbons over this catalyst.

Kinetic Studies

Further studies were carried out to clarify the nature of the interesting effect of $P(CO_2)$ and to elucidate the reaction mechanism over the CaO-CeO₂ catalyst. Figure 6

FIG. 5. Dependence of catalytic activity on partial pressure of CO_2 over single and binary oxides. (A) CH_4 conversion over CeO_2 (\triangle), CaO (\Box), and CaO–CeO₂ (\bigcirc); C₂ yield over CaO–CeO₂ (\bigcirc). (B) C₂ selectivity over CeO₂ (\blacktriangle), CaO (\blacksquare), and CaO–CeO₂ (\bigcirc). Reaction conditions: *T* = 850°C, *P*(CH₄) = 30 kPa.


FIG. 6. Dependence of the performance of the CaO–CeO₂ catalyst on reaction temperature. (\bigcirc) and (\bigcirc), CH₄ conversion at *P*(CO₂) of 10 and 70 kPa; (\square) and (\blacksquare), C₂ selectivity at *P*(CO₂) of 10 and 70 kPa, respectively. Reaction condition: *P*(CH₄) = 30 kPa.

shows the temperature dependence of the catalytic performance at $P(CO_2)$ of 10 and 70 kPa. There was no significant effect of $P(CO_2)$ on CH₄ conversion at temperatures of \leq 800°C. However, as temperatures exceeded 800°C, CH₄ conversion was higher at higher $P(CO_2)$. Such partial pressure effects became greater at higher temperatures. CH₄ conversion at 900°C was 6.5 and 10.5% at 10 and 70 kPa, respectively.

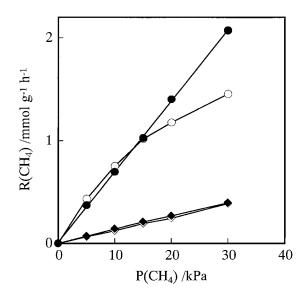

 C_2 selectivity at ≤800°C was slightly higher at 70 kPa than at 10 kPa despite the same level of CH₄ conversion. The increase in temperature decreased C_2 selectivity in both cases, but the extent of the decline was more considerable at low $P(CO_2)$ as the temperature was increased to >800°C. As a result, at 900°C, C_2 selectivity at 70 kPa was more than 5 times that at 10 kPa. Although the C_2H_6/C_2H_4 ratio in C_2 hydrocarbons was not shown in Fig. 6, it decreased with temperature, irrespective of the value of $P(CO_2)$. This means that C_2H_6 is the primary product and C_2H_4 is formed by secondary reactions of C_2H_6 .

Figure 7 shows the Arrhenius plots for rates of CH₄ conversion at $P(CO_2)$ of 10 and 70 kPa. A good straight line was obtained at 70 kPa in the whole range examined (700–900°C), the apparent activation energy being calculated to be 220 kJ mol⁻¹. On the other hand, at $P(CO_2)$ of 10 kPa, two straight lines with different slopes were required to fit the data. The activation energies calculated were 250 kJ mol⁻¹ at \leq 800°C and 140 kJ mol⁻¹ at \geq 800°C. The former one was similar to that at high $P(CO_2)$.

Figure 8 shows the effect of $P(CH_4)$ on the rate of CH_4 conversion, $R(CH_4)$, at $P(CO_2)$ of 10 and 70 kPa and at 780 and 850°C. At high $P(CO_2)$, $R(CH_4)$ increased proportionally to $P(CH_4)$ irrespective of reaction temperature. Whereas, at low $P(CO_2)$, $R(CH_4)$ at 850°C seemed to level

FIG. 7. Arrhenius plots with the CaO–CeO₂ catalyst. (\bigcirc) $P(CO_2) = 10$ kPa; (\bigcirc) $P(CO_2) = 70$ kPa.

FIG. 8. Dependence of the rate of CH₄ conversion on partial pressure of CH₄. (\diamond) *P*(CO₂) = 10 kPa and 780°C; (\blacklozenge) *P*(CO₂) = 70 kPa and 780°C; (\circlearrowright) *P*(CO₂) = 70 kPa and 780°C; (\circlearrowright) *P*(CO₂) = 70 kPa and 850°C.

off with increasing $P(CH_4)$, viz., the reaction order with respect to CH_4 became less than 1, although $R(CH_4)$ at 780°C increased linearly.

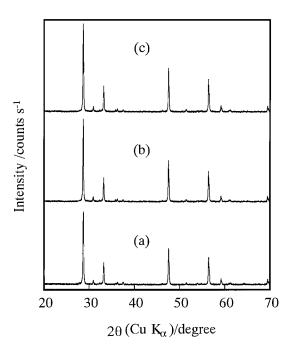
The results described above show that the kinetic features at $P(CO_2)$ of 10 kPa are different from those at $P(CO_2)$ of 70 kPa when the temperature exceeds 800°C.

Chemisorption of CO2

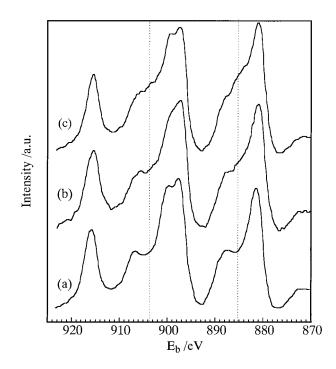
To examine the chemisorption of CO_2 on the CaO–CeO₂ catalyst after reaction, TPD measurements were carried out. Table 3 shows the TPD results both in He flow and in CO₂ flow with different $P(CO_2)$. Only one desorption peak was observed in every case. The peak temperature was 730°C in He flow. It shifted to 810, 850, and 910°C in CO₂ flow with $P(CO_2)$ of 10, 30, and 70 kPa, respectively. These observations indicate that a pool of chemisorbed CO₂ always exists on the catalyst at temperatures of \leq 900°C under $P(CO_2)$ of 70 kPa, whereas the pool disappears at >810°C and >850°C under $P(CO_2)$ of 10 and 30 kPa, respectively.

TABLE 3

TPD Results for the Catalysts after Reaction of CH_4 and CO_2 at $850^\circ C$


		CO ₂ desorption		
Catalyst	P(CO ₂) during TPD (kPa)	Peak temperature (°C)	Amount (mmol)	
CaO-CeO ₂	0	730	0.70	
CaO-CeO ₂	10	810	0.75	
CaO-CeO ₂	30	850	0.75	
CaO-CeO ₂	70	910	0.65	
CeO ₂	30	No desorption		

As shown in Table 3, the amounts of the CO_2 desorbed were estimated to be 0.65–0.75 mmol, which corresponded to 1/7-1/8 of the amount of CaO in the catalyst. Because no desorption of CO_2 was detectable from CeO_2 alone, Ca species in the CaO–CeO₂ catalyst must account for the chemisorption of CO_2 .


Characterization of the CaO–CeO₂ Catalyst after Reaction

The CaO-CeO₂ catalyst after reaction at 850°C under $P(CO_2)$ of 10 or 70 kPa was guenched to room temperature and instantly subjected to XRD analysis. Figure 9 shows that XRD patterns after reaction are independent of $P(CO_2)$ and almost identical to those before reaction. Any diffraction lines of CaCO3 as well as Ce(CO3)2 or Ce2(CO3)3 were not detectable after reaction. Thus, bulk carbonates were not formed during the reaction over the CaO-CeO₂ catalyst. The XRD measurements were also carried out for single oxides of CeO₂ and CaO. Any carbonate phases were not observed for CeO₂ after reactions at both high and low $P(CO_2)$, but CaO was transformed to CaCO₃ after the reaction at $P(CO_2)$ of 70 kPa. The absence of CaCO₃ in the binary catalyst may indicate that the Ce component plays a role in the activation of the chemisorbed CO₂ during reaction to prevent the formation of bulk carbonate.

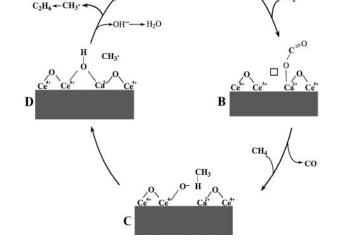
Figure 10 shows the Ce 3d XPS spectra for the samples before and after reaction under the same conditions as in Fig. 9. According to the Ref. (18), the peaks at 882.3 ± 0.2 , 888.6 ± 0.3 , 898.1 ± 0.2 , 900.2 ± 0.5 , 906.2 ± 0.5 ,

FIG. 9. X-ray diffraction patterns for the CaO–CeO₂ catalyst. (a) Before reaction. (b) and (c) After reaction at 850° C under *P*(CO₂) of 70 and 10 kPa, respectively.

FIG. 10. Ce 3*d* XPS spectra for the CaO–CeO₂ catalyst. (a) Before reaction. (b) and (c) After reaction at 850°C under $P(CO_2)$ of 70 and 10 kPa, respectively.

and 916.7 \pm 0.5 eV can be assigned to v, v'', v''', u, u'', and u'''states of Ce⁴⁺, respectively, while the peaks at 885.2 \pm 0.3 and 904.0 \pm 0.5 eV correspond to v' and u' states of Ce³⁺. The spectrum before reaction (curve a in Fig. 10) exhibited six peaks ascribed to Ce⁴⁺. In addition to them, two shoulder peaks at 885.2 and 903.9 eV clearly appeared after reactions at both high and low $P(CO_2)$, which indicates the existence of Ce³⁺ on the catalyst surface. Moreover, the peaks of Ce³⁺ were stronger at low $P(CO_2)$, suggesting that the concentration of Ce³⁺ on the surface was dependent on $P(CO_2)$. It can thus be speculated that Ce³⁺ sites formed during reaction are responsible for the activation of CO₂.

DISCUSSION


The present work has demonstrated that the modification of CeO₂ with CaO leads to a novel catalyst system effective for the conversion of CH₄ to C₂ hydrocarbons by CO₂ and achieves the highest C₂ yield of 6% at a steady state under the conditions of 900°C and $P(CO_2)$ of 70 kPa. The stable catalytic performance is also noteworthy. Although this yield is still lower than the best one obtained in the oxidative coupling of CH₄ by O₂, the results described here have presented a new route for the simultaneous utilization of CH₄ and CO₂.

Although many papers have been published on CO_2 reforming of CH_4 to produce H_2 and CO using either metal (19) or oxide catalysts (20), high C_2 selectivity observed over composite catalysts of CaO and CeO₂ shows that such reforming reactions are insignificant under the present conditions and may be suppressed by the CO₂ chemisorbed on the catalysts. The most distinct feature of the present composite catalyst of CaO and CeO₂ is the crucial roles of CO_2 in the formation of C_2 hydrocarbons. The CO_2 TPD of the used catalyst after reaction reveals that a pool of chemisorbed CO₂ exists on the catalyst and the desorption profile depends on $P(CO_2)$ and reaction temperature (Table 3). The combination of these results and catalytic performances at different $P(CO_2)$ and temperatures (Figs. 4–6) shows that the existence of the CO_2 pool leads to high C₂ selectivity. On the other hand, C₂ selectivity dropped after the pool disappeared, for example, at $> 810^{\circ}$ C under $P(CO_2)$ of 10 kPa (Fig. 6). The absence of CO_2 , that is, the reaction of CH₄ alone, resulted in exclusive formation of CO with trace amounts of C₂ hydrocarbons.

The apparent activation energy for the rate of CH₄ conversion at $P(CO_2)$ of 10 kPa was different below and above 800°C, in other words, higher at \leq 800°C, whereas that at $P(CO_2)$ of 70 kPa was constant at 700–900°C and similar to the higher activation energy at 10 kPa. Since a pool of the CO₂ chemisorbed on the CaO–CeO₂ catalyst exists both in the whole temperature range under high $P(CO_2)$ and at <810°C under low $P(CO_2)$, shown in Table 3, it is probable that the presence of the chemisorbed CO₂ results in higher activation energy.

These observations show different reaction mechanisms before and after desorption of the chemisorbed CO₂. The lattice oxygen of CaO–CeO₂ catalyst may partially be involved when the CO₂ is desorbed. Since C₂ selectivity is low under such conditions, CH₄ may react mainly with the lattice oxygen to form CO and H₂ and the reduced catalyst. The stable performance observed even at low $P(CO_2)$ of 10 kPa (Fig. 4) suggests reoxidation of the oxide by CO₂. As shown in Fig. 8, the reaction order with respect to CH₄ was less than 1 at $P(CO_2)$ of 10 kPa and at 850°C. This may be interpreted as follows; as $P(CH_4)$ increases, the catalyst may be reduced to a larger extent, which results in the decreased concentration of lattice oxygen atoms.

In the presence of the chemisorbed CO_2 , on the other hand, the CO_2 pool on the CaO–CeO₂ catalyst may inhibit the reaction via the redox mechanism involving the lattice oxygen and thus lead to high C₂ selectivity. Taking into account the different kinetic features, it is suggested that a different reaction mechanism works for selective C₂ formation. Figure 11 shows the proposed mechanism. Active binary catalysts with Ca/Ce ratios of 0.1–0.5 are present in the form of solid solution (Figs. 3 and 9) and rich in Ca species at the outermost layer (Table 2), which also includes Ce^{3+} sites during reaction (Fig. 10). Thus, CO_2 first adsorbs on the catalyst surface due to interaction with basic Ca^{2+} sites (Fig. 11B), and then the Ce^{3+} sites activate CO_2 to form CO and active oxygen species, possibly O^- (Fig. 11C), which

FIG. 11. Proposed mechanism for selective formation of C₂ hydrocarbons over CaO–CeO₂ catalyst.

converts CH_4 to CH_3 · radical (Fig. 11D). The involvement of chemisorbed CO_2 in the reaction would lead to higher activation energy than in the case where lattice oxygen participates in activation of CH_4 . The formation of solid solution, in other words, the presence of neighboring Ca^{2+} and Ce^{3+} sites, is efficient for CO_2 adsorption and its subsequent activation. Furthermore, the incorporation of bivalent Ca^{2+} cation into CeO_2 lattice generates defect sites, which promote redox reactions between Ce^{4+} and Ce^{3+} (21). This may be the reason for the increase in the rate of CH_4 conversion due to the formation of solid solution between CaOand CeO_2 .

CONCLUSIONS

CH₄ is selectively converted to C₂ hydrocarbons by CO₂ using composite CaO–CeO₂ catalysts. The two components in the catalyst show synergistic effects on C₂ formation. The presence of CO₂ is vital for C₂ formation, and C₂ selectivity increases remarkably with increasing $P(CO_2)$. A steady-state C₂ yield of 6% can be achieved with selectivity of ca. 60% at 900°C and $P(CO_2)$ of 70 kPa. The presence of CO₂ chemisorbed on the catalyst surface affects the kinetic features. It is probable that the cooperation of Ca²⁺ and Ce³⁺ sites in solid solution of the catalyst enhances the chemisorption and activation of CO₂ to produce active oxygen species for selective C₂ formation.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Science, Sports and Culture, Japan (No. 10555275).

CO₂

REFERENCES

- 1. Pitchai, R., and Klier, K., Catal. Rev.-Sci. Eng. 28, 13 (1986).
- 2. Lee, J. S., and Oyama, S. T., Catal. Rev.-Sci. Eng. 30, 249 (1988).
- Hutchings, G. J., Scurrel, M. S., and Woodhouse, J. R., *Chem. Soc. Rev.* 18, 251 (1989).
- 4. Krylov, O. V., Catal. Today 18, 209 (1993).
- Martin, G. A., and Mirodatos, C., *Fuel Process. Technol.* 42, 179 (1995).
- 6. Lunsford, J. H., Angew. Chem. Int. Ed. Engl. 34, 970 (1995).
- Kuo, J. W. C., Kresge, C. T., and Palermo, R. E., *Catal. Today* 4, 470 (1989).
- 8. Aika, K., and Nishiyama, T., J. Chem. Soc. Chem. Commun. 70 (1988).
- 9. Nishiyama, T., and Aika, K., J. Catal. 122, 346 (1990).
- 10. Asami, K., Fujita, T., Kusakabe, K., Nishiyama, Y., and Ohtsuka, Y., *Appl. Catal. A: General* **126**, 245 (1995).
- Asami, K., Kusakabe, K., Ashi, N., and Ohtsuka, Y., *Stud. Surf. Sci. Catal.* 107, 279 (1997).

- Asami, K., Kusakabe, K., Ashi, N., and Ohtsuka, Y., *Appl. Catal. A: General* 156, 43 (1997).
- 13. Chen, C., Xu, Y., Li, G., and Guo, X., Catal. Lett. 42, 149 (1996).
- Wang, Y., Takahashi, Y., and Ohtsuka, Y., *Appl. Catal. A: General* 172, 203 (1998).
- 15. Otsuka, K., Shimizu, Y., and Komatsu, T., Chem. Lett. 1835 (1987).
- Arai, H., Kunisaki, T., Shimizu, Y., and Seiyama, T., Solid State Ionics 20, 241 (1986).
- 17. Zhang, Z.-L., and Baerns, M., J. Catal. 135, 317 (1992).
- Laachir, A., Perrichon, V., Badri, A., Lamotle, J., Catherine, E., Lavalley, J. C., Fallah, J. E., Hilaire, L., Normand, F. le, Quémére, E., Sauvion, G. N., and Touret, O., *J. Chem. Soc. Faraday Trans.* 87, 1601 (1991); Normand, F. le, Hilaire, L., Kili, K., Krill, G., and Maire, G., *J. Phys. Chem.* 92, 2561 (1988).
- 19. Bradford, M. C. J., and Vannice, M. A., *Catal. Rev. Sci. Eng.* **41**, 1 (1999).
- Krylov, O. V., Mamedov, A. Kh., and Mirzabekova, S. R., *Catal. Today* 42, 211 (1998).
- 21. Trovarelli, A., de Leitenburg, C., and Dolcetti, G., *Chemtech* **27**(6), 32 (1997).